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Abstract. Most haptic APIs cannot efficiently render complex scenes. This pa-

per presents two techniques that can reduce the time needed to haptically render 

a complex scene: a technique based on a spatial grid and a technique based on a 

modification of an octtree. These techniques are both theoretically and experi-

mentally compared with each other and the default algorithm used in e-Touch. 

These results are discussed in order to draw conclusions on the best technique 

for a given scene. 

1 Introduction 

Over the past few years new techniques have been introduced that can render complex 
objects, such as implicit surfaces [1], NURBS surfaces [2], deformable surfaces [3,4],  
CSG trees [5] and polygon models [6]. These object representations allow for more 
rich and complex scenes. However, most haptic APIs do not take complex scenes, 
consisting of a large number of objects, into account. GHOST uses a tree which is 
traversed [7], while e-Touch needs to process all objects [8]. These APIs only use 
bounding boxes in order to speed up the rendering process. Tests have shown, how-
ever, that other techniques are necessary in order to render complex scenes. Acosta 
and Temkin showed that GHOST can only render a few dozen complex polygon 
meshes [9]. This figure even diminishes with every new version of the API. Contrary, 
graphic and simulation algorithms are able to handle very complex scenes [10].  
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Not only can large scenes break the haptic loop constraints, it is also desirable to 
minimise the time it takes to render an object, since other parts of the virtual envron-
ments, such as the user interface [11,12] have to be rendered too.  

Finally, in order to overcome the problem of having one contact point, some ap-
plications use multiple haptic devices [13-15]. If these haptic devices are connected to 
only one computer, the haptic load dramatically increases [16], thus decreasing the 
number of objects that can be rendered in a stable manner.  

This paper introduces two techniques that decrease the haptic load of complex 
scenes. These techniques are discussed in the following section. Sections 3 and 4 dis-
cuss two experiments that compare these techniques with the default rendering algo-
rithm of e-Touch. Finally, some conclusions are drawn from the results.  

2 Spatial Partitioning 

In order to decrease the number of objects that are unnecessarily checked, we have 
implemented two spatial partitioning algorithms. These algorithms divide the 3D 
world into smaller parts; only objects that are located in the same part as the haptic 
pointer are rendered. The first algorithm, explained in Sect. 2.1, subdivides the 3D 
world into equal parts, while the algorithm of Sect. 2.2 subdivides only the parts that 
are necessary.  

The different objects in the world do not always fall exactly in a part defined by 
one of the algorithms, but may intersect with several parts. Section 2.3 explains how 
this intersection is determined.  

2.1 Grid 

The first algorithm uses an n x n x n  grid, which divides the 3D world in  n3  
equal-sized cells, where n can vary (but stays constant during the execution of the ap-
plication). At the start of the program, the algorithm of Sect. 2.3 determines for each 
object with which cells it intersects, and associates the object with these cells.  

During the execution of the program, the haptic pointer is located in only one cell 
at a time, called the current cell. Only the objects that intersect with this cell have to 
be haptically rendered.  
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2.1.1 Advantages. 
A grid has the advantage that the 3D world is divided into smaller cells in a straight 
forward manner. Since the current cell can be calculated in time O(1) , the time 
needed to render the 3D world is reduced to rendering the current cell.  

2.1.2 Disadvantages. 
Since all cells have the same size, the grid will have a good performance with a 3D 
world, where the objects are evenly distributed. However, this implies that the grid's 
performance is suboptimal with non-evenly distributed 3D worlds, which are more 
common. In such 3D worlds, some cells hold only a small number of objects --- or are 
even empty --- while other cells contain a large number of objects and are thus more 
difficult to render.  

2.1.3 Rendering Speed. 
The standard algorithms, discussed in Sect. 1, need time O(N)  to render a 3D world, 
consisting of N objects. We believe that the grid's speedup depends on the distribution 
of the objects.  

An evenly distributed 3D world is rendered in O(N/n3) , since all objects are evenly 
distributed over n3 cells. Please remark that the speedup is O(n3) , not n3 since one 
object can intersect with several cells.  

For an arbitrary distributed world, the rendering time depends on the number of 
objects in the current cell. For this reason, the rendering time can range from O(1)  to  
O(N) , although  O(N)  is a worst-case scenario, where all objects are located in one 
cell. However, this is in practice never reached. In this case, the grid should be  
redefined.  

2.2 Octtree 

An octtree is a spatial partitioning structure, which is often used to represent objects. 
It divides an object's bounding box into 8 octants and stores them in a tree structure. 
Such an octant can be empty (no point of the object's volume lies inside the octant), 
partially full (the octant is partially filled with points of the object's volume) or full 
(the octant is completely filled with points of the object's volume). The partially full 
octants are then further divided into new octants. This process is repeated either until  
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all leaf nodes in the tree are full or empty or until a predetermined depth is reached in 
the tree [17].  

We use a modified octtree algorithm in order to store the 3D world's objects. When 
an object is added to the octtree, the leaf nodes that intersect the object are determined 
by traversing the tree and using the algorithm of Sect. 2.3. The object is then associ-
ated with these leaf nodes. Each leaf node that contains more than a predetermined 
number of objects M is further divided into 8 new octants and the objects that inter-
sect the old leaf node are checked for intersections with the new leaf nodes. When a 
leaf node has a predetermined minimum size, it is not subdivided further and fills up 
with new objects.  

The modified algorithm thus creates an octtree, where each leaf node l intersects 

with lx objects, where  Mxl ≤≤0   and where each internal node i intersects with  

ix  objects, where Mxi > .  

During the execution of the program, the leaf node that contains the haptic pointer 
is determined by traversing the octtree, starting from the leaf node that contained the 
pointer during the previous haptic loop.  

2.2.1 Advantages. 
The algorithm's main advantage is the fact that the subdivision in a certain part of the 
3D world depends on the local complexity. Sparse areas are covered by a small sub-
tree, while dense areas are associated with a larger subtree. This both limits the num-
ber of objects in a leaf node (time usage) and the number of nodes in the octtree 
(memory usage). The time complexity of rendering a leaf node is at most O(M), 
unless the minimum leaf node size is reached. In this case too many objects are lo-
cated in the same small space and in worst-case the octtree is reduced to the standard  
algorithm and needs O(N) time for the rendering process. This situation should be 
avoided since it probably does not make sense for the application to have a lot of 
(possibly intersecting) objects in a small space, only a few millimetres wide. 

2.2.2 Disadvantages. 
A drawback of the octtree is the fact that it has to be traversed during the haptic ren-
dering process. Traversing the octtree from a leaf node to one of its siblings consists 
of two steps: traversal upwards from the leaf node to its parent node and traversal 
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downwards from the parent node to the sibling leaf node. Traversal from one part of 
the octtree to another can take a lot more steps. Although this traversal process does 
not take a lot of time, its execution in the 1kHz haptic loop can increase the haptic 
load significantly when the 3D world is large and complex. In the worst case scenario 
where the only common ancestor of two leaf nodes is the root node, the traversal path 
from one leaf node to the other includes the root node. In an evenly distributed 3D 

world, this path has a length of )(log8 M
NO .  

2.2.3 Solution. 
In order to minimise the traversal path between two nodes, each node not only con-
tains a connection to its parent and its children, but also to its neighbouring nodes. 
Figure 1 shows a 1D version (in a binary tree) of this setup. Our octtree implements a 
3D version of this principle.  

 

Fig. 1. Tree representation: solid lines represent parent-child relations; dotted lines neighbour-
ing nodes. 

As an example of the speed-up of our solution, suppose the user moves the haptic 
pointer from leaf node A to leaf node B in Fig. 1. Without the extra connections, the 
tree traversal consists of 5 steps, including the octtree's root node. Using the extra 
connections, the traversal only consists of two steps: from leaf node A to its parent 
and from this internal node to leaf node B.  
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2.2.4 Rendering Speed. 
We believe that, like in the grid's case, the octtree's rendering speed depends on the 
distribution of the objects in the 3D world.  

When using the octtree without the extra neighbouring connections, an evenly dis-

tributed 3D world has a worst case rendering time of )log( 8 M
NMO + , while the 

extra connections reduce this rendering time to O(M) .  
The rendering time of an arbitrary distributed world, depends on the number of 

objects in the current leaf node. The rendering time can therefore range from O(1)  to  
O(N) . A rendering time O(N)  represents a worst-case scenario, where too many ob-
jects are located in the same small space, as little as the minimum leaf node size. 
which is undesirable for haptic rendering.  

2.3 Object Intersection 

When adding an object to the 3D world, the object has to be placed in the grid or 
octtree that represents this 3D world. In the case of the 3D grid, intersection with all  
n3  cells have to be checked. In the octtree case, traversal of the tree and intersection 

testing with )(log8 M
NO nodes encountered during the traversal suffice. This means 

that large number of intersection tests with the same object have to be calculated.  
In order to reduce the time needed for an intersection test, we have chosen to test 

the intersection of a grid cell or leaf node with the object's bounding box. One can ei-
ther chose to use the object's Axis-Aligned Bounding Box (AABB) or the tighter fit-
ting Object-aligned Bounding Box (OBB) [17]. An intersection with an AABB is 
easier and faster to check. We have, however, chosen to use OBB's. Because of the 
tighter fit (as can be seen in Fig. 2), an OBB is less likely to have an unnecessary in-
tersection (an intersection with a cell that intersects the bounding box, but not the ob-
ject). This reduces the number of objects that have to be rendered at run time.  
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(a) AABB        (b) OBB 

Fig. 2. Comparison of bounding boxes. 

In order to minimise the time needed for the intersection tests, we make use of the 
separating axis theorem [18]. This theorem provides an efficient test for determining 
if two OBBs overlap (we treat the grid's cells and tree's leaf nodes as OBBs). It states 
that, if two OBBs do not overlap, an axis exists where the projection of the two OBBs 
onto the axis do not overlap. This axis is called a separating axis. Furthermore, [18] 

states that only 15 possible axes 
→

L  have to be checked:  

→→→

= WxVL  
(1) 

The vectors 
→

V and 
→

W  in (1) are taken from the OBBs' six box axes. For AABBs, 

the number of tests in this theorem is reduced to 3. However, the speedup of having a 
tighter fit in the haptic loop justifies the extra tests in the OBB case.  

3 Experiments 

Two experiments were conducted in order to assess the usefulness of the algorithms 
discussed in sections 2.1 and 2.2. Both experiments compared the haptic load of dif-
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ferent scenes when using different algorithms. A PHANToM 1.0 was used as force 
feedback device, while the algorithms were implemented using e-Touch beta 3.  

In the first experiment, objects were placed in a grid of equal sides, as depicted in 
Fig. 3. These objects were rendered with the standard e-Touch renderer, a grid with  
2 x 2 x 2  cells, a grid with  5 x 5 x 5  cells, an octtree with minimum leaf node size 
of 5mm and maximum 2 objects and an octtree with minimum leaf node size of 5mm 
and maximum 5 objects. The partitioned space, rendered by the algorithms, was 
slightly larger than the object grid and, depending on the number of objects, larger 
than the PHANToM device's workspace.  

 

(a) Experiment 1 (27 objects)   (b) Experiment 2 (20 objects) 

Fig. 3. Experimental set-up 

For the second experiment, a number of test scenes, containing 10, 20, 50, 100, 200 
or 500 randomly placed objects, were prepared (see Fig. 3b). For each number of ob-
jects, five different scenes were created. In order to start the test without hindering the 
PHANToM device, each scene's objects stay out of a small region around the cursor's 
starting position. This test was conducted with the standard e-Touch renderer, a grid 
with 2 x 2 x 2 cells, a grid with 5 x 5 x 5 cells, an octtree with minimum leaf node 
size of 5mm and maximum 2 objects. The objects stayed within a  25cm x 25cm x 
25cm  large cube. The partitioned space matched this work area.  
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In both experiments, the number of objects were increased for each rendering al-
gorithm until the haptic rendering was no longer stable. The haptic load was assessed 
using the haptic drivers haptic load tool [6]. Since this is the only way to assess the 
haptic load, this tool is currently considered a valid (although not precise) means to 
measure the performance of haptic algorithms. All values that are mentioned in this 
paper are estimates from the tool's visual output; no exact figures can be given. We 
determined the maximum haptic load when moving through the virtual world, without 
touching an object, when statically touching an object and when sliding over an ob-
ject's surface. In both experiments, the objects were cubes of  5cm x 5cm x 5cm  
(e-Touch boxes), because they can be efficiently rendered, and thus have little over-
head in the rendering process. For this purpose, we extended e-Touch's haptic cube 
renderer with the separating axis algorithm (see Sect. 2.3).  

The computer used in the experiments is a dual Pentium III 800 MHz with 128MB 
RAM, running Windows 2000. Only static scenes were used in these experiments, 
since dynamic scenes need to be explicitly updated. It is however possible to tempo-
rary remove an object from the grid or octtree, use standard rendering during its 
movement and put it back into the grid or octtree when the movement is finished.  

4 Results 

4.1 Experiment 1 

The first experiment shows that the grid indeed significantly increases the number of 
objects that can be haptically rendered. When using the standard e-Touch renderer, a 
grid of 3 x 3 x 3 objects can efficiently be rendered. It is however not possible to 
stably render a grid containing 64 objects. Table 1 summarises the haptic load for the 
standard renderer and illustrates the increase of haptic load when touching the object 
and sliding over its surface.  

Table 1.  Results of experiment 1 for the standard renderer 

# objects No Touch Touch Sliding 
8 35% <40% 45% 

27 65% <70% >70% 
64 Unstable haptics 
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The 2 x 2 x 2 grid algorithm is able to render 216 objects in a stable manner, while 

the 5 x 5 x 5 grid is able to render 1728 objects. These figures are in the expected or-
der of O(n3) as discussed in Sect. 2.1.  

The octtree algorithm keeps dividing the space and can thus render the objects in 
constant time. We stopped increasing the number of objects when we reached 8000, 
because the haptic load stayed consistently under 40% (in the sliding case, which 
needs the most rendering time).  

4.2 Experiment 2 

Since the previous experiment did not use realistic scenes, we decided to perform an-
other experiment as a “stress test” for the algorithms.  

This experiment confirms the result we found in experiment 1 for the standard ren-
derer: we were able to render the scenes with 10 or 20 objects, but the scenes with 50 
objects could not be rendered in a stable manner.  

Since the grid algorithm divides the 3D space in smaller parts, it was able to render 
more objects. The 2 x 2 x 2 grid could render 100 objects. However, the haptics be-
come unstable when sliding over an object's surface. The 5 x 5 x 5 grid is able to 
stably render 200 objects. The speedup is less than in the first experiment, but is still 
significant.  

The octtree is able to stably render all scenes with 200 objects and some of the 500 
objects scenes. As a comparison, Table 2 summarises the haptic load for the scenes 
with 200 objects when rendering with the 5 x 5 x 5 grid and the octtree. As one can 
see from this table, the octtree is able to render these scenes with a smaller haptic 
load.  

Table 2. Results of experiment 2 for 200 objects 

 Grid Octtree 
Scene No touch Touch Sliding No touch Touch Sliding 

1 >60% 65% <80% 45% 55% 60% 
2 >70% 75% Unstable >40% <50% >50% 
3 >60% 65% <80% 45% <50% 55% 
4 >60% 65% 80% 45% <50% >50% 
5 >60% 65% unstable >40% 45% <50% 
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When rendering the smaller scenes, the octtree algorithm behaved in a similar 
manner as in the first experiment. The haptic load started to rise when the minimum 
leaf node size was reached. When rendering the scenes with 500 objects, the number 
of objects per leaf node rose to more than 50, which cannot be rendered by evaluating 
all objects.  

This stress test experiment proves that the octtree algorithm is able to render far 
more complex scenes than can be reasonably expected to be used in a haptic applica-
tion.  

5 Conclusions 

This paper presented two algorithms, which can be used in order to render complex 
scenes. We have proven through two experiments that these algorithms are suitable 
for the haptic rendering of complex scenes. The grid algorithm can be used with 
evenly distributed worlds, where the cell size can be determined in advance. The 
octtree algorithm on the other hand can be used for an arbitrary complex scene, as 
long as the number of objects in a leaf node stays reasonable.  
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