
Improving Haptic Rendering of Complex Scenes using
Spatial Partitioning

Chris Raymaekers and Karin Coninx

Limburgs Universitair Centrum

Expertise centre for Digital Media

 Universitaire Campus, B-3590 Diepenbeek, Belgium

{chris.raymaekers, karin.coninx}@luc.ac.be

Abstract. Most haptic APIs cannot efficiently render complex scenes. This pa-

per presents two techniques that can reduce the time needed to haptically render

a complex scene: a technique based on a spatial grid and a technique based on a

modification of an octtree. These techniques are both theoretically and experi-

mentally compared with each other and the default algorithm used in e-Touch.

These results are discussed in order to draw conclusions on the best technique

for a given scene.

1 Introduction

Over the past few years new techniques have been introduced that can render complex
objects, such as implicit surfaces [1], NURBS surfaces [2], deformable surfaces [3,4],
CSG trees [5] and polygon models [6]. These object representations allow for more
rich and complex scenes. However, most haptic APIs do not take complex scenes,
consisting of a large number of objects, into account. GHOST uses a tree which is
traversed [7], while e-Touch needs to process all objects [8]. These APIs only use
bounding boxes in order to speed up the rendering process. Tests have shown, how-
ever, that other techniques are necessary in order to render complex scenes. Acosta
and Temkin showed that GHOST can only render a few dozen complex polygon
meshes [9]. This figure even diminishes with every new version of the API. Contrary,
graphic and simulation algorithms are able to handle very complex scenes [10].

194 Chris Raymaekers and Karin Coninx

Not only can large scenes break the haptic loop constraints, it is also desirable to
minimise the time it takes to render an object, since other parts of the virtual envron-
ments, such as the user interface [11,12] have to be rendered too.

Finally, in order to overcome the problem of having one contact point, some ap-
plications use multiple haptic devices [13-15]. If these haptic devices are connected to
only one computer, the haptic load dramatically increases [16], thus decreasing the
number of objects that can be rendered in a stable manner.

This paper introduces two techniques that decrease the haptic load of complex
scenes. These techniques are discussed in the following section. Sections 3 and 4 dis-
cuss two experiments that compare these techniques with the default rendering algo-
rithm of e-Touch. Finally, some conclusions are drawn from the results.

2 Spatial Partitioning

In order to decrease the number of objects that are unnecessarily checked, we have
implemented two spatial partitioning algorithms. These algorithms divide the 3D
world into smaller parts; only objects that are located in the same part as the haptic
pointer are rendered. The first algorithm, explained in Sect. 2.1, subdivides the 3D
world into equal parts, while the algorithm of Sect. 2.2 subdivides only the parts that
are necessary.

The different objects in the world do not always fall exactly in a part defined by
one of the algorithms, but may intersect with several parts. Section 2.3 explains how
this intersection is determined.

2.1 Grid

The first algorithm uses an n x n x n grid, which divides the 3D world in n3
equal-sized cells, where n can vary (but stays constant during the execution of the ap-
plication). At the start of the program, the algorithm of Sect. 2.3 determines for each
object with which cells it intersects, and associates the object with these cells.

During the execution of the program, the haptic pointer is located in only one cell
at a time, called the current cell. Only the objects that intersect with this cell have to
be haptically rendered.

Improving Haptic Rendering of Complex Scenes using Spatial Partitioning 195

2.1.1 Advantages.
A grid has the advantage that the 3D world is divided into smaller cells in a straight
forward manner. Since the current cell can be calculated in time O(1) , the time
needed to render the 3D world is reduced to rendering the current cell.

2.1.2 Disadvantages.
Since all cells have the same size, the grid will have a good performance with a 3D
world, where the objects are evenly distributed. However, this implies that the grid's
performance is suboptimal with non-evenly distributed 3D worlds, which are more
common. In such 3D worlds, some cells hold only a small number of objects --- or are
even empty --- while other cells contain a large number of objects and are thus more
difficult to render.

2.1.3 Rendering Speed.
The standard algorithms, discussed in Sect. 1, need time O(N) to render a 3D world,
consisting of N objects. We believe that the grid's speedup depends on the distribution
of the objects.

An evenly distributed 3D world is rendered in O(N/n3) , since all objects are evenly
distributed over n3 cells. Please remark that the speedup is O(n3) , not n3 since one
object can intersect with several cells.

For an arbitrary distributed world, the rendering time depends on the number of
objects in the current cell. For this reason, the rendering time can range from O(1) to
O(N) , although O(N) is a worst-case scenario, where all objects are located in one
cell. However, this is in practice never reached. In this case, the grid should be
redefined.

2.2 Octtree

An octtree is a spatial partitioning structure, which is often used to represent objects.
It divides an object's bounding box into 8 octants and stores them in a tree structure.
Such an octant can be empty (no point of the object's volume lies inside the octant),
partially full (the octant is partially filled with points of the object's volume) or full
(the octant is completely filled with points of the object's volume). The partially full
octants are then further divided into new octants. This process is repeated either until

196 Chris Raymaekers and Karin Coninx

all leaf nodes in the tree are full or empty or until a predetermined depth is reached in
the tree [17].

We use a modified octtree algorithm in order to store the 3D world's objects. When
an object is added to the octtree, the leaf nodes that intersect the object are determined
by traversing the tree and using the algorithm of Sect. 2.3. The object is then associ-
ated with these leaf nodes. Each leaf node that contains more than a predetermined
number of objects M is further divided into 8 new octants and the objects that inter-
sect the old leaf node are checked for intersections with the new leaf nodes. When a
leaf node has a predetermined minimum size, it is not subdivided further and fills up
with new objects.

The modified algorithm thus creates an octtree, where each leaf node l intersects

with lx objects, where Mxl ≤≤0 and where each internal node i intersects with

ix objects, where Mxi > .

During the execution of the program, the leaf node that contains the haptic pointer
is determined by traversing the octtree, starting from the leaf node that contained the
pointer during the previous haptic loop.

2.2.1 Advantages.
The algorithm's main advantage is the fact that the subdivision in a certain part of the
3D world depends on the local complexity. Sparse areas are covered by a small sub-
tree, while dense areas are associated with a larger subtree. This both limits the num-
ber of objects in a leaf node (time usage) and the number of nodes in the octtree
(memory usage). The time complexity of rendering a leaf node is at most O(M),
unless the minimum leaf node size is reached. In this case too many objects are lo-
cated in the same small space and in worst-case the octtree is reduced to the standard
algorithm and needs O(N) time for the rendering process. This situation should be
avoided since it probably does not make sense for the application to have a lot of
(possibly intersecting) objects in a small space, only a few millimetres wide.

2.2.2 Disadvantages.
A drawback of the octtree is the fact that it has to be traversed during the haptic ren-
dering process. Traversing the octtree from a leaf node to one of its siblings consists
of two steps: traversal upwards from the leaf node to its parent node and traversal

Improving Haptic Rendering of Complex Scenes using Spatial Partitioning 197

downwards from the parent node to the sibling leaf node. Traversal from one part of
the octtree to another can take a lot more steps. Although this traversal process does
not take a lot of time, its execution in the 1kHz haptic loop can increase the haptic
load significantly when the 3D world is large and complex. In the worst case scenario
where the only common ancestor of two leaf nodes is the root node, the traversal path
from one leaf node to the other includes the root node. In an evenly distributed 3D

world, this path has a length of)(log8 M
NO .

2.2.3 Solution.
In order to minimise the traversal path between two nodes, each node not only con-
tains a connection to its parent and its children, but also to its neighbouring nodes.
Figure 1 shows a 1D version (in a binary tree) of this setup. Our octtree implements a
3D version of this principle.

Fig. 1. Tree representation: solid lines represent parent-child relations; dotted lines neighbour-
ing nodes.

As an example of the speed-up of our solution, suppose the user moves the haptic
pointer from leaf node A to leaf node B in Fig. 1. Without the extra connections, the
tree traversal consists of 5 steps, including the octtree's root node. Using the extra
connections, the traversal only consists of two steps: from leaf node A to its parent
and from this internal node to leaf node B.

198 Chris Raymaekers and Karin Coninx

2.2.4 Rendering Speed.
We believe that, like in the grid's case, the octtree's rendering speed depends on the
distribution of the objects in the 3D world.

When using the octtree without the extra neighbouring connections, an evenly dis-

tributed 3D world has a worst case rendering time of)log(8 M
NMO + , while the

extra connections reduce this rendering time to O(M) .
The rendering time of an arbitrary distributed world, depends on the number of

objects in the current leaf node. The rendering time can therefore range from O(1) to
O(N) . A rendering time O(N) represents a worst-case scenario, where too many ob-
jects are located in the same small space, as little as the minimum leaf node size.
which is undesirable for haptic rendering.

2.3 Object Intersection

When adding an object to the 3D world, the object has to be placed in the grid or
octtree that represents this 3D world. In the case of the 3D grid, intersection with all
n3 cells have to be checked. In the octtree case, traversal of the tree and intersection

testing with)(log8 M
NO nodes encountered during the traversal suffice. This means

that large number of intersection tests with the same object have to be calculated.
In order to reduce the time needed for an intersection test, we have chosen to test

the intersection of a grid cell or leaf node with the object's bounding box. One can ei-
ther chose to use the object's Axis-Aligned Bounding Box (AABB) or the tighter fit-
ting Object-aligned Bounding Box (OBB) [17]. An intersection with an AABB is
easier and faster to check. We have, however, chosen to use OBB's. Because of the
tighter fit (as can be seen in Fig. 2), an OBB is less likely to have an unnecessary in-
tersection (an intersection with a cell that intersects the bounding box, but not the ob-
ject). This reduces the number of objects that have to be rendered at run time.

Improving Haptic Rendering of Complex Scenes using Spatial Partitioning 199

(a) AABB (b) OBB

Fig. 2. Comparison of bounding boxes.

In order to minimise the time needed for the intersection tests, we make use of the
separating axis theorem [18]. This theorem provides an efficient test for determining
if two OBBs overlap (we treat the grid's cells and tree's leaf nodes as OBBs). It states
that, if two OBBs do not overlap, an axis exists where the projection of the two OBBs
onto the axis do not overlap. This axis is called a separating axis. Furthermore, [18]

states that only 15 possible axes
→

L have to be checked:

→→→

= WxVL
(1)

The vectors
→

V and
→

W in (1) are taken from the OBBs' six box axes. For AABBs,

the number of tests in this theorem is reduced to 3. However, the speedup of having a
tighter fit in the haptic loop justifies the extra tests in the OBB case.

3 Experiments

Two experiments were conducted in order to assess the usefulness of the algorithms
discussed in sections 2.1 and 2.2. Both experiments compared the haptic load of dif-

200 Chris Raymaekers and Karin Coninx

ferent scenes when using different algorithms. A PHANToM 1.0 was used as force
feedback device, while the algorithms were implemented using e-Touch beta 3.

In the first experiment, objects were placed in a grid of equal sides, as depicted in
Fig. 3. These objects were rendered with the standard e-Touch renderer, a grid with
2 x 2 x 2 cells, a grid with 5 x 5 x 5 cells, an octtree with minimum leaf node size
of 5mm and maximum 2 objects and an octtree with minimum leaf node size of 5mm
and maximum 5 objects. The partitioned space, rendered by the algorithms, was
slightly larger than the object grid and, depending on the number of objects, larger
than the PHANToM device's workspace.

(a) Experiment 1 (27 objects) (b) Experiment 2 (20 objects)

Fig. 3. Experimental set-up

For the second experiment, a number of test scenes, containing 10, 20, 50, 100, 200
or 500 randomly placed objects, were prepared (see Fig. 3b). For each number of ob-
jects, five different scenes were created. In order to start the test without hindering the
PHANToM device, each scene's objects stay out of a small region around the cursor's
starting position. This test was conducted with the standard e-Touch renderer, a grid
with 2 x 2 x 2 cells, a grid with 5 x 5 x 5 cells, an octtree with minimum leaf node
size of 5mm and maximum 2 objects. The objects stayed within a 25cm x 25cm x
25cm large cube. The partitioned space matched this work area.

Improving Haptic Rendering of Complex Scenes using Spatial Partitioning 201

In both experiments, the number of objects were increased for each rendering al-
gorithm until the haptic rendering was no longer stable. The haptic load was assessed
using the haptic drivers haptic load tool [6]. Since this is the only way to assess the
haptic load, this tool is currently considered a valid (although not precise) means to
measure the performance of haptic algorithms. All values that are mentioned in this
paper are estimates from the tool's visual output; no exact figures can be given. We
determined the maximum haptic load when moving through the virtual world, without
touching an object, when statically touching an object and when sliding over an ob-
ject's surface. In both experiments, the objects were cubes of 5cm x 5cm x 5cm
(e-Touch boxes), because they can be efficiently rendered, and thus have little over-
head in the rendering process. For this purpose, we extended e-Touch's haptic cube
renderer with the separating axis algorithm (see Sect. 2.3).

The computer used in the experiments is a dual Pentium III 800 MHz with 128MB
RAM, running Windows 2000. Only static scenes were used in these experiments,
since dynamic scenes need to be explicitly updated. It is however possible to tempo-
rary remove an object from the grid or octtree, use standard rendering during its
movement and put it back into the grid or octtree when the movement is finished.

4 Results

4.1 Experiment 1

The first experiment shows that the grid indeed significantly increases the number of
objects that can be haptically rendered. When using the standard e-Touch renderer, a
grid of 3 x 3 x 3 objects can efficiently be rendered. It is however not possible to
stably render a grid containing 64 objects. Table 1 summarises the haptic load for the
standard renderer and illustrates the increase of haptic load when touching the object
and sliding over its surface.

Table 1. Results of experiment 1 for the standard renderer

objects No Touch Touch Sliding
8 35% <40% 45%

27 65% <70% >70%
64 Unstable haptics

202 Chris Raymaekers and Karin Coninx

The 2 x 2 x 2 grid algorithm is able to render 216 objects in a stable manner, while

the 5 x 5 x 5 grid is able to render 1728 objects. These figures are in the expected or-
der of O(n3) as discussed in Sect. 2.1.

The octtree algorithm keeps dividing the space and can thus render the objects in
constant time. We stopped increasing the number of objects when we reached 8000,
because the haptic load stayed consistently under 40% (in the sliding case, which
needs the most rendering time).

4.2 Experiment 2

Since the previous experiment did not use realistic scenes, we decided to perform an-
other experiment as a “stress test” for the algorithms.

This experiment confirms the result we found in experiment 1 for the standard ren-
derer: we were able to render the scenes with 10 or 20 objects, but the scenes with 50
objects could not be rendered in a stable manner.

Since the grid algorithm divides the 3D space in smaller parts, it was able to render
more objects. The 2 x 2 x 2 grid could render 100 objects. However, the haptics be-
come unstable when sliding over an object's surface. The 5 x 5 x 5 grid is able to
stably render 200 objects. The speedup is less than in the first experiment, but is still
significant.

The octtree is able to stably render all scenes with 200 objects and some of the 500
objects scenes. As a comparison, Table 2 summarises the haptic load for the scenes
with 200 objects when rendering with the 5 x 5 x 5 grid and the octtree. As one can
see from this table, the octtree is able to render these scenes with a smaller haptic
load.

Table 2. Results of experiment 2 for 200 objects

 Grid Octtree
Scene No touch Touch Sliding No touch Touch Sliding

1 >60% 65% <80% 45% 55% 60%
2 >70% 75% Unstable >40% <50% >50%
3 >60% 65% <80% 45% <50% 55%
4 >60% 65% 80% 45% <50% >50%
5 >60% 65% unstable >40% 45% <50%

Improving Haptic Rendering of Complex Scenes using Spatial Partitioning 203

When rendering the smaller scenes, the octtree algorithm behaved in a similar
manner as in the first experiment. The haptic load started to rise when the minimum
leaf node size was reached. When rendering the scenes with 500 objects, the number
of objects per leaf node rose to more than 50, which cannot be rendered by evaluating
all objects.

This stress test experiment proves that the octtree algorithm is able to render far
more complex scenes than can be reasonably expected to be used in a haptic applica-
tion.

5 Conclusions

This paper presented two algorithms, which can be used in order to render complex
scenes. We have proven through two experiments that these algorithms are suitable
for the haptic rendering of complex scenes. The grid algorithm can be used with
evenly distributed worlds, where the cell size can be determined in advance. The
octtree algorithm on the other hand can be used for an arbitrary complex scene, as
long as the number of objects in a leaf node stays reasonable.

6 Acknowledgments

Part of the work presented in this paper has been funded by the Flemish Government
and EFRO (European Fund for Regional Development).

References

1. Salisbury, K., Tarr, C. : Haptic rendering of surfaces defined by implicit functions. In:

Proceedings of the ASME 6th Annual Symposium on Haptic Interfaces for Virtual Envi-

ronments and Teleoperator Systems, Dallas, TX, USA (1997) 61-68.

2. Thompson, T.V., Johnson, D.E., Cohen, E. : Direct haptic rendering of sculptured models.

In: Symposium on Interactive 3D Graphics, Providence, RI, USA (1997).

3. Zhang, J., Payandeh, D., Dill, J. : Haptic subdivision: an approach to defining

level-of-detail in haptic rendering. In: Proceedings of the 10th International Symposium on

204 Chris Raymaekers and Karin Coninx

Haptic Interfaces for Virtual Environments and Teleoperator Systems, Orlando, FL, USA

(2002) 201-208.

4. Corso, J.J., Chhugani, J., Okamura, A.M. : Interactive haptic rendering of deformable sur-

faces based on the media axis transform. In: Proceedings of Eurohaptics 2002, Edinburgh,

UK (2002) 92-98.

5. Raymaekers, C., Van Reeth, F. : Algorithms for haptic rendering of CGC trees. In: Pro-

ceedings of Eurohaptics 2002, Edinburgh, UK (2002) 86-91.

6. Anderson, T., Brown, N. : The ActivePolygon polygonal algorithm for haptic force gen-

eration. In: Proceedings of the sixth PHANToM Users Group Workshop, Aspen, CO,

USA (2001).

7. Sensable Technologies: GHOST Programmers Guide. (2001)

8. Novint: e-Touch Programmers Guide (2001).

9. Acosta, E., Temkin, B. : Scene complexity: A measure for real-time stable haptic applica-

tions. In: Proceedings of the sixth PHANToM Users Group Workshop, Aspen, CO, USA

(2001)

10. Hopcroft, M., Cabral, B., Hoppe, H., Lin., M., Manoch, D., Whitted, T. : Interactive

Walk-Through of Complex Environments. Number 12 in Course Notes for SIGGRAPH

’97. ACM, Los Angeles, CA, USA (1997).

11. Anderson, T., Breckenridge, A., Davidson, G. : FBG: A graphical and haptic user interface

for creating graphical, haptic user interfaces. In: Proceedings of the Fourth PHANToM

Users Group Workshop, Dedham, MA, USA (1999)

12. Raymaekers, C., COninx, K.: Menu interactions in a desktop haptic environment. In: Pro-

ceedings of Eurohaptics 2001, Birmingham, UK (2001) 49-53

13. Pollick, F.E., Chizk, C., Hager-Roos, C., Hayhoe, M. : Implicit accuracy constraints in

two-fingered grasps of virual objects with haptic feedback. In: Proceedings of the Work-

shop on Hapic Human-Computer Interaction, Glasgow, UK (2000) 28-32

14. Wall, S.A., Harwin, W.S. : Design of a multiple contact point haptic interface. In: Pro-

ceedings of Eurohaptics 2001, Birmingham (UK) 49-53

15. Michelitsch, G., Ruf, A., van Veen, H., van Erp, J. : Multi-finger haptic interaction within

the MIAMM project. In: Proceedings of Eurohaptics 2002, Edinburgh, UK (2002)

144-149

16. De Boeck, J., Raymaekers, C., Coninx, K. : Assessing the increase in haptic load when

using a dual PHANToM setup. In: Proceedings of the seventh PHANToM Users Group

Workshop, Santa Fe, NM, USA (2002)

Improving Haptic Rendering of Complex Scenes using Spatial Partitioning 205

17. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F. : Computer graphics principles and

practice. Systems Programming Series. Addison-Wesley (1990)

18. Gottschalk, S., Ling, M., Manocha, D.: OBB-tree: A hierarchical structure for rapid inter-

ference detection. In: Proceedings of the SIGGRAPH 1996 annual conference on Com-

puter Graphics, New Orleans, LA, USA (1996) 171-180

